Tuberculosis in roe deer from Spain and Italy

TUBERCULOSIS (TB) is a chronic infectious disease caused by bacteria of the genus *Mycobacterium* (Grange and others 1990). The detection of wildlife reservoirs of disease is important, particularly in areas where there is a relatively low incidence of the disease in domestic animals. Tuberculosis cases in roe deer (*Capreolus capreolus*) are reported only sporadically, despite the wide distribution and the abundance of this cervid. Roe deer with TB have been reported in Germany (Schmidt 1938), Switzerland (Bouvier 1963), France (Zanella and others 2008) and the UK (Gunning 1985, Delahay and others 2007). This short communication is the first report of TB in roe deer in Spain and Italy, and discusses the implications of these findings for wildlife and livestock disease control. The prevalence of mycobacterial infections, such as tuberculosis and paratuberculosis, seems to be increasing in Spain. Wildlife species may act as disease reservoirs, so this short communication also elucidates the epidemiology of mycobacterial infections in species such as roe deer.

The Spanish roe deer was legally hunted on January 31, in Valdés, Asturias (43°29'07"N; 7°18'37"W). The carcase and viscera were transported to the Servicio Regional de Investigación y Desarrollo Agroalimentario veterinary laboratory in Gijón for a complete necropsy performed the same day. The Italian roe deer was run over on June 6, 2005, by a car nearby Ollomont, in the middle of the Aosta Valley (45°51'0"N; 7°18'37"E). Unfortunately, all the thoracic and abdominal organs were lost and only the skinned chest with little lung tissue was submitted to the Italian Reference Centre for Wildlife Disease laboratory in Aosta.

From the Spanish roe deer, tonsils, lung and mediastinal and bronchial lymph node samples were taken after postmortem examination.
Samples were fixed in 10 per cent neutral buffered formalin, routinely processed and treated with haematoxylin and eosin and by Ziehl-Neelsen stain for acid-fast bacteria. Immunohistochemical examination by means of the peroxidase antiperoxidase method was performed (Sternberger and others 1970). The sections were incubated with specific rabbit-antiserum against Mycobacterium bovis (Dako; Denmark) at a dilution of 1:4000. Tissue samples from a cow infected with M bovis were prepared as a positive control. A preimmune rabbit serum was prepared as a negative control. The histological examination performed on lesions from the Italian roe deer was undertaken in a similar way. For the Spanish roe deer PCR was carried out on fresh tissue samples from lungs and associated lymph nodes. The UltraClean Forensic DNA kit (Mo Bio Laboratories) was used to isolate high quality DNA from tissue samples. The primers used to identify M tuberculosis complex mycobacteria (CTCGTCCAGGCGGCGCTTCCGG-CCTGCGAGCGTGGCCTGG) amplified a 123 pb fragment of insertion sequence IS6110 (Miller and others 1997). The PCR was carried out on fresh decontaminated tissue homogenate from the lungs and associated lymph nodes of the Italian roe deer. DNA was extracted using the NucleoSpin Tissue kit (Macherey-Nagel). The amplification procedure was based on a heminested PCR: primers EXT-1 (CCCCGAGACGCCGAGT), EXT-2A (CCGACGGGGGCGAGT), INT-1 (CCCCATCGACTACG) were designed to amplify a 203 bp fragment of the IS6110 gene and used to identify M tuberculosis complex DNA (Goria and others 2006).

Samples of the lung and lymph nodes from the Spanish roe deer were submitted to two different laboratories, Neiker and Hospital Virgen del Rocío, for mycobacterial culture using standard procedures. The Italian roe deer samples were homogenised, decontaminated and inoculated onto three different types of solid media: Löwenstein Jensen, Stonebrink and Löwenstein Jensen without glycerine. Suspected colonies underwent Ziehl Neelsen staining and typing by molecular methods. Identification was performed using a multiplex PCR based on simultaneous detection of the RNA16S sequence, insertion element IS986 and the mpt40 gene. The strain was submitted for molecular characterisation, including spoligotyping, as described by Kamerbeek and others (1997), and VNTR typing (ETR A,B,C,D,E), according to Frothingham and Meeker-O’Connel (1998).

In the Spanish roe deer, gross lesions were restricted to the tonsils, lungs, and mediastinal and bronchial lymph nodes. A single nodule, 3 cm in diameter, was observed in the tonsils. The lungs were congested, enlarged and diffusely consolidated. Several gelatinous white, slightly raised, well-demarcated nodules, with a diameter of 0.5 to 3 cm, were scattered throughout the lungs (Fig 1a). Bronchial and mediastinal lymph nodes were enlarged and contained white caseum, which had led to complete structure loss. Microscopically, most of the pulmonary parenchyma was occupied by a diffuse, severe granulomatous pneumonia. The white foci appeared as tubercles with large caseous, necrotic centres, occasionally calcified, surrounded by a thin layer of epithelioid and multinucleated giant cells, with infiltration of lymphocytes and plasma cells (Fig 2a). A connective capsule of approximately 2 mm surrounded each nodule. Immunohistochemistry confirmed TB. A multifocal intensive positive immunolabel was observed in the necrotic area and in macrophages within and around the granulomas (Fig 2b). The cells did not show intracytoplasmic staining with Ziehl-Neelsen stain. In the Italian roe deer, gross lesions consisted of multiple nodules with diameters varying from a few mm to 6 cms (Fig 1b). Nodules were observed also in some lymphoid tissue and a little piece of lung tissue (Fig 1b), that were adherent to the chest after the thoracic organs had been removed. The nodules had an outer fibrous capsule and a yellow-green coloured caseous purulent content.

Microscopically, each nodule showed typical features of a bovine
tuberculous granuloma, with multiple calcified central foci, a large middle zone of caseous necrosis that formed the main part of the granuloma, a thin marginal inflammatory cell reaction and a defining connective capsule with fibroblasts, collagen fibrils and follicular lymphocyte foci (Fig 2c). In the marginal inflammatory layer there was a predominance of epitheloid macrophages and multinucleated giant cells with fewer lymphocytes and no plasma cells. In the contact area between the granulomas and costal bones, there were aspects of osteolysis and a dominance of neutrophils over the epitheloid cell reaction, with few giant cells (Fig 2d). No acid-fast bacteria was observed with Ziehl-Neelsen staining. PCR detection on tissue samples, M tuberculosis complex DNA was identified by PCR performed on tissue samples taken from the Spanish and Italian roe deer. In the Spanish roe deer no mycobacteria was isolated. However, M bovis was isolated from the Italian roe deer. The spoligotyping pattern was SB0120 (BCG-like) and the VNTR-ETR, A,B,C,D,E pattern was 54433. Molecular typing data showed that this strain had also been found in cattle infected with TB from the same area.

This the first record of TB in roe deer in Spain and Italy. In other European countries roe deer with TB have been reported only sporadically. Delahay and others (2007) found 1 per cent prevalence among 885 roe deer from southern England and a recent investigation in France discovered a prevalence of 1 per cent among 92 roe deer tested from a forest that sustained red deer and wild boar with a high prevalence of TB (Zanella and others 2008). In Spain, no lesions compatible with TB had been observed in necropsied roe deer from the same region between 2002 and 2007, before the case reported here.

The taxon of mycobacteria infecting the Spanish roe deer could not be identified. The animal may have resolved the infection, given time; few live mycobacteria were present in the lesions. The IS6110 sequence insertion is specific for all organisms of the M tuberculosis complex, which includes M bovis (Grange and others 1990). In Spain, isolation of mycobacteria other than M bovis or M caprae in the M tuberculosis complex would be an extremely rare occurrence, particularly in ruminants.

In Italy between 2002 and 2006, 44 roe deer (the majority road kills) were submitted for postmortem examination. Except for the case reported here, no TB compatible lesions were found.

The increasing distribution and density of roe deer in many European regions (Acevedo and others 2005) could imply increased contact risk with livestock (Gortázar and others 2007). However, roe deer are less gregarious than other deer species, thus reducing the potential for disease maintenance (Delahay and others 2007). Since roe deer are selective browsers (Mussa and others 2003), opportunities to contract infection from environmental contaminants are probably few. Therefore, roe deer are not a significant TB reservoir for other wildlife.

Acknowledgements
The authors thank Emilio Álvarez, the hunter, for alerting the vets and the gamekeepers and hunters’ association from Valdés. Thanks are given to J. M. Garrido of the Servicio Regional de Investigación y Desarrollo Agroalimentario and M. J. Torres at the Hospital Virgen del Rocío for their valuable help. This report contributes to the agreement between IREC and Principado de Asturias on wildlife disease surveillance, and to grants from MEC INIA (FAU2006-00017 and ACF2006-00001) and Plan Nacional (AGL2005-07401) on shared diseases (with FEDER). For the Italian roe deer, the authors thank D. Cretaz of the Forester Guard and P. Sontini of Aosta Valley Region Veterinary Service for submitting the case to CERMAS laboratories. Thanks also go to colleagues at CERMAS and IZS PLV for their technical support.
References

BOUVIER, G. (1963) Possible transmission of tuberculosis and brucellosis from game animals to man and domestic animals. *Bulletin de l’Office des Epizooties* 59, 433-477

FIG 1: (a) Diffuse severe granulomatous pneumonia in the lung of a Spanish roe deer. Several white and well-demarcated nodules are scattered throughout the parenchyma. (b) Tuberculosis nodules in lung tissue and lymph nodes (arrows) from an Italian roe deer.
FIG 2: (a) Tubercle in the lung of a Spanish roe deer with a caseous necrotic centre, surrounded by a layer of multinucleated giant cells and infiltration of lymphocytes and plasma cells. Haematoxylin and eosin. × 200. (b) Positive anti-\textit{M bovis} immunolabel in the necrotic area of the lung tubercle. Peroxidase anti-peroxidase. × 400. (c) Tuberculosis nodule at low magnification showing calcification (black arrow), caseous necrosis (black arrowhead), inflammatory peripheral layer (asterisk) and connective capsule (red arrowhead). Osteolysis in the contact area between the tuberculosis nodule and costal bone. The arrow shows a little bone spicule among the epithelioid flogosis.