Biomechanics of the forehand stroke

Original article: Bahamonde, R. (2001). *ITF CSSR*, 24, 6-8
Introduction

• The tennis forehand stroke has changed drastically over the last 10 years

• Today's players seldom use the traditional forehand but the modern topspin forehand stroke
Introduction

• Changes in the forehand technique have been attributed to:
 – New racket designs,
 – Better physical fitness of the players, and
 – Increasing speed of the game
Changes in racket designs

• Rackets are bigger, lighter, and stiffer than the traditional wooden rackets

• Allow players to hit the ball with:
 – More power and
 – More control
Changes in racket designs

• These changes in the forehand technique have influenced:
 – The type of grip,
 – Footwork, and
 – Racket backswing and forward swing
Preparation

The Grip

- Functions of the grip:
 - Provide the proper racket orientation at impact,
 - Place the wrist in a favorable strength position, and,
 - Allow for hand mobility
Preparation

The Grip

- Use a firm grip near impact to control the racket during off-centre hits

- Most tennis professionals advocate the use of a western or semi-western grip instead of the traditional eastern forehand grip
Preparation

The Grip

• Western:
 – Easier to generate topspin and maintain racket orientation at impact
 – Produce higher forward (toward the court) and sideways (along baseline) velocities than the Eastern
 – Difficult for players to hit low bouncing balls.
Preparation

The Grip

• Eastern forehand:
 – Greater wrist stability
 – Proper racket orientation at impact regardless of ball height

• Semi-Western forehand
Preparation

The stance

• Open stance:
 – Players must react faster and are forced to hit on the run due to the power developed in the groundstrokes and the serves
 – Little or no transfer of linear momentum since the step is taken side ways,
 – Only the segment rotations are used to generate power for the forward swing
Preparation

The stance

• Traditional square stance:
 – Takes longer to execute
 – It generates linear momentum; as the player steps forward toward the ball, and
 – Angular momentum; from the rotation of the legs, hips, and trunk
The backswing

Which type provides more racket velocity and control?

• Traditional straight:
 – Thought that provided more control
 – Loop (large and small) backswings provided greater racket velocity
The backswing

Which type provides more racket velocity and control?

• Large-loop:
 – Increases racket velocity, but affects racket control and timing

• Small-loop:
 – Increases racket velocity without affecting the timing and control of the stroke
The backswing

Which type provides more racket velocity and control?

- Regardless of the type of backswing used
- For more power and efficiency
- Transition between the backswing and forward swing:
 - Fluid motion: smooth and continuous
 - Enhances the player's ability to utilize the pre-stretching of the muscles
The forward swing

Type

- Modified by the changes in the game

- Multi-segment forehand technique:
 - Used by top professional players
 - Individual segments of the upper extremity are used to generate racket velocity
 - More compact arm during the backswing
 - Generate higher racket and ball velocities
The forward swing

Type

- Conventional / single unit forward swing:
 - Segments of the upper extremity move as a single unit from the shoulder
 - No differences in the grip or initial footwork
The forward swing

Type

- Select the forward swing:
 - Multi-segment or
 - single unit forehand

that best suits the player’s physical and motor skill abilities
The forward swing

Racket trajectory and orientation

- The trajectory of the racket (stroke arc):
 - Horizontal motion: flattened arc near impact
 - Vertical plane: Optimum angle of the racket 28°
The forward swing

Racket trajectory and orientation

- Angles:
 - Smaller tend to produce less spin
 - Larger sacrifice ball speed and the depth
 - Changes in footwork and forward swing influence the arc
The forward swing

Racket trajectory and orientation

- Multi-segment forehand swing:
 - Smaller arc = smaller swing radius = less accurate
 - Steep vertical trajectory at impact (47°)
The forward swing

Racket trajectory and orientation

• Open stance:
 – Not more efficient
 – Result of lack of preparation time for the forehand stroke
 – Less time to successfully hit the ball on the racket face in the horizontal plane.
The forward swing

Racket trajectory and orientation

- Closed stance:
 - More accurate racket path in the horizontal plane.
The forward swing

Linear and Angular Momentum

- How to develop more power and control?
- Both can be achieved through the proper development of linear and angular momentum
The forward swing

Linear and Angular Momentum

• Linear momentum:
 – Quantity of linear motion that a body possesses
 – Developed through the forces generated from the ground as you step forward and transfer your body weight from the back leg to the forward leg (for a closed stance footwork)
The forward swing
Linear and Angular Momentum

- Angular momentum:
 - Quantity of angular motion that a body possesses
 - Developed from the ground reaction forces (GRF)
 - Tends to produce a sequence of body rotations (legs, hips, trunk, upper limb, and racket)
 - Optimal trunk rotation is one of the outcomes of angular momentum
The forward swing

Linear and Angular Momentum

• Trunk rotation:
 – Correlated with racket velocity (about 10%)
 – Used in the pre-stretching of the shoulder muscles to allow them to produce a larger tension
Conclusion

What to do to produce explosive forehands?

• Understand the basic biomechanical principles
• Understand how to apply them to the different components of the strokes
Conclusion

What to do to produce explosive forehands?

• The racket is one of the most important sources of power for a tennis player
• Stress the importance of using trunk rotation and the legs throughout the forehand stroke
• Explain to the players the importance of a proper follow-through.